Energy Storage and Carbon Capture and Storage (CCS)

Emerging Clean Generation Technologies

Rob Trautz Technical Executive

Current Issues 2021 Tuesday, August 31, 2021

 Image: margin black
 Image: margin black

 www.epri.com
 © 2021 Electric Power Research Institute, Inc. All rights reserved.

Energy Storage: Low-Carbon Enabler

- Variable renewable energy (VRE) is projected to grow significantly to reduce greenhouse gases
- Energy storage is needed to provide power when renewables cannot and for grid stability and reliability
 - 1–4 hours duration: Lower VRE, fossil use prevalent
 - Batteries
 - 4–48 hours duration: Medium VRE, some fossil backup
 - Potential for non-battery types
 - Weekly or seasonal duration: High VRE
 - Low-carbon fuels, e.g., hydrogen
- Dispatchable, reliable, safe, and cheap—and preferably synchronous

Energy storage will require longer durations and larger scales

A huge amount of "bulk" energy storage will be needed – TWhs

Energy Storage Types

Electrochemical Reversible chemical reaction generates an electrical potential difference

Thermal Energy storage achieved by heating a bulk media

Mechanical

Kinetic or potential

Advancing technology today in store for tomorrow

Chemical

Reaction produces product that

Example: Concrete Thermal Energy Storage (CTES)

- Design, construct, and test a 10 MWh-e
 CTES system integrated to a Southern's Plant Gaston
- Low-cost material: \$68/tonne
- Solid 'thermocline' structure used to store thermal energy; steam tubes embedded into concrete as coils
- Details (per block)
 - 20 tube coils, 7 m³, 18.6 tonnes material
 - 0.75 x 11 x 12.5 m (road/rail transport)
- CTES Assembly
 - Arrangement: 10 high by 6 wide
- Operation for 11 months

Tube internal arrangement

Construction has started with operation in 2022

Production of Hydrogen (H₂)

- H₂, ammonia, biofuels, and synthetic fuels are referred to as Alternative Energy Carriers (AECs)
- AECs are not primary sources of energy, rather they are created by converting other energy sources to a fuel that can be readily transported and stored
- H₂ can be produced using various industrial 48% processes, energy sources (e.g., fossil fuels, biomass, electricity) and water
- Electrolysis must use low- or no-carbon electricity and gasification/SMR must use CCS to reduce CO₂ emissions

Energy penalty occurs during each conversion step "No free lunch"

Gasification of coal, oil, and biomass

Electrolysis using low- or no-carbon electricity

48%

4%

www.epri.com

What is the Scale and How Much Electricity is Consumed by Electrolysis for H₂ Production?

Scenarios	Annual H ₂ production (MMt)	Electricity Consumption (TWh)	Percent global electricity use 2018	Context
Current H ₂ production, X				Arrow Andrew Arrow Arr
All H2 production methods	70			N E W M E X I C O
Electrolysis (US)	0.5	26.6	0.1	Exceeds The Land of Enchantment's electricity consumption
Replace 30% H ₂ sourced from coal with electrolysis	21	1,097	4.1	~ Russia's electricity consumption Reduces global CO ₂ emissions by 1%
Replace 100% H ₂ sourced from all fuels with electrolysis	70	3,657	13.7	~ 88% of US generation
Estimated H ₂ demand growth by 2050				
Shell model, 2X	131	6,843	25.6	2x current production
Hydrogen Council, 8X	564	29,462	110	Exceeds global electricity consumption

H₂ Transportation and Storage Challenges

- H₂ contains 1/3 the energy of natural gas at normal working conditions
- Blending H₂ in natural gas pipelines
 - <20% blends will likely require little to no changes in end-use equipment and appliances
 - >20% will likely require upgrades to enduse equipment/appliances, compressor stations, valves, etc., but pipeline materials could potentially be repurposed
- Hydrogen's lower volumetric energy density creates storage challenges

Blending H₂ into NG does not result in an equivalent 1 to 1 reduction in CO₂ emissions

The Low-Carbon Resources Initiative (LCRI) is a five-year R&D commitment focused on the advancement of low-carbon technologies for large-scale deployment across the energy economy. This initiative is jointly led by **EPRI and GTI**.

Opportunities for Deploying Carbon Capture and Storage

EPCI ELECTRIC POWER RESEARCH INSTITUTE

4

Global CCS Project Experience

Compare bubble size at right with those below

Source: Global CCS Institute, 2019.The Global Status of CCS: 2019. Australia.

~59 Mtpa* Largest coal-fired power station in the world 6,720 MW 25.5 Mtpa* Largest natural gas fired power station in the world 5,597MW

* Calculated emissions using average CO_2 emission intensity for the US fleet (NG and coal are 0.42 and 1.0 tCO₂/MWh, respectively). Actual plant emission intensity may differ.

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Overview: CalCapture FEED Study

- Project Objectives
 - Determine technical and economic feasibility of deploying Fluor's Econamine FG+SM post-combustion carbon capture process on CRC's 550 MWe NGCC Elk Hills Power Plant (EHPP)
 - Captured CO₂ used for enhanced oil recovery (EOR) and/or storage
- Project Team
 - EPRI, California Resources Corporation (CRC), and Elk Hills Carbon, LLC, a Joint Venture between CRC and Oil and Gas Climate Initiative
- Funding Total \$8,644,807
 - DOE: \$6,915,845 (80%)
 - Cost-Share: \$1,728,962 (20%)
- Performance Dates
 - October 1, 2019 September 30, 2021
- Commercial Drivers
 - EOR, Federal 45Q, CA Low Carbon Fuel Standard, CA Cap & Trade provide significant commercial drivers

Direct Air Capture (DAC)

- Project Objectives
 - The project will provide the design basis for blueprints for commercial plants and a thorough techno economic analysis (TEA) and life cycle analysis (LCA) of a fully integrated system for multiple climates
 - 1 ton/day for cluster of 12 trees
- Project Team
 - Carbon Collect Limited, EPRI, Arizona State University, Trimeric Corporation, PM Group Global
- Funding Total
 - DOE: \$2,500,000
 - Cost share: \$781,330
- Performance Dates
 - September 1, 2021 May 31, 2023
- Commercial Driver
 - Scalable carbon capture that can be co-located with geologic storage resources

Passive capture of CO₂ from ambient air

Column of disks extend to a height of 10 metres and are saturated with CO2 from ambient air

Disks are lowered into a chamber. Air is extracted before regeneration occurs to pull off the CO₂.

The mechanical tree extends again to its 10 metre height to repeat the process.

Together...Shaping the Future of Electricity